CSC D70: Compiler Optimization Parallelization

Prof. Gennady Pekhimenko
 University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of Todd Mowry and Tarek Abdelrahman

Announcements

- Final exam: Wednesday, April 11, 7:00-8:30pm; Room: IC120
- Covers the whole semester
- Course evaluation (right now)

Data Dependence

$$
\begin{array}{cc}
S_{1}: & A=1.0 \\
S_{2}: & B=A+2.0 \\
S_{3}: & A=C-D \\
& \vdots \\
S_{4}: & A=B / C
\end{array}
$$

We define four types of data dependence.

- Flow (true) dependence: a statement S_{i} precedes a statement S_{j} in execution and S_{i} computes a data value that S_{j} uses.
- Implies that S_{i} must execute before S_{j}.

$$
S_{i} \delta^{\dagger} S_{j} \quad\left(S_{1} \delta^{\dagger} S_{2} \quad \text { and } \quad S_{2} \delta^{\dagger} S_{4}\right)
$$

Data Dependence

$$
\begin{array}{ll}
S_{1}: & A=1.0 \\
S_{2}: & B=A+2.0 \\
S_{3}: & A=C-D \\
S_{4}: & A=B / C
\end{array}
$$

We define four types of data dependence.

- Anti dependence: a statement S_{i} precedes a statement S_{j} in execution and S_{i} uses a data value that S_{j} computes.
- It implies that S_{i} must be executed before S_{j}.

$$
S_{i} \delta^{a} S_{j} \quad\left(S_{2} \delta^{a} S_{3}\right)
$$

Data Dependence

$$
\begin{array}{ll}
S_{1}: & A=1.0 \\
S_{2}: & B=A+2.0 \\
S_{3}: & A=C-D \\
S_{4}: & A=B / C
\end{array}
$$

We define four types of data dependence.

- Output dependence: a statement S_{i} precedes a statement S_{j} in execution and S_{i} computes a data value that S_{j} also computes.
- It implies that S_{i} must be executed before S_{j}.

$$
S_{i} \delta^{\circ} S_{j} \quad\left(S_{1} \delta^{\circ} S_{3} \quad \text { and } \quad S_{3} \delta^{\circ} S_{4}\right)
$$

Data Dependence

$$
\begin{array}{cc}
S_{1}: & A=1.0 \\
S_{2}: & B=A+2.0 \\
S_{3}: & A=C-D \\
& \vdots \\
S_{4}: & A=B / C
\end{array}
$$

We define four types of data dependence.

- Input dependence: a statement S_{i} precedes a statement S_{j} in execution and S_{i} uses a data value that S_{j} also uses.
- Does this imply that S_{i} must execute before S_{j} ?

$$
S_{i} \delta^{\mathrm{I}} S_{j} \quad\left(S_{3} \delta^{\mathrm{I}} S_{4}\right)
$$

Data Dependence (continued)

- The dependence is said to flow from S_{i} to S_{j} because S_{i} precedes S_{j} in execution.
- S_{i} is said to be the source of the dependence. S_{j} is said to be the sink of the dependence.
- The only "true" dependence is flow dependence; it represents the flow of data in the program.
- The other types of dependence are caused by programming style; they may be eliminated by re-naming.

$$
\begin{array}{ll}
S_{1}: & A=1.0 \\
S_{2}: & B=A+2.0 \\
S_{3}: & A 1=C-D \\
S_{4}: & A 2=B / C
\end{array}
$$

Data Dependence (continued)

- Data dependence in a program may be represented using a dependence graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, where the nodes V represent statements in the program and the directed edges E represent dependence relations.

$$
\begin{array}{cc}
\mathrm{S}_{1}: & \mathrm{A}=1.0 \\
\mathrm{~S}_{2}: & \mathrm{B}=\mathrm{A}+2.0 \\
\mathrm{~S}_{3}: & \mathrm{A}=\mathrm{C}-\mathrm{D} \\
& \vdots \\
\mathrm{~S}_{4}: & \mathrm{A}=\mathrm{B} / \mathrm{C}
\end{array}
$$

Value or Location?

- There are two ways a dependence is defined: value-oriented or location-oriented.

$$
\begin{aligned}
\mathrm{S}_{1}: & \mathrm{A}=1.0 \\
\mathrm{~S}_{2}: & \mathrm{B}=\mathrm{A}+2.0 \\
\mathrm{~S}_{3}: & \mathrm{A}=\mathrm{C}-\mathrm{D} \\
& \vdots \\
\mathrm{~S}_{4}: & \mathrm{A}=\mathrm{B} / \mathrm{C}
\end{aligned}
$$

Example 1

$$
\begin{aligned}
& \text { do } \mathrm{i}=2,4 \\
& S_{1}: \quad a(i)=b(i)+c(i) \\
& S_{2}: \quad d(i)=a(i) \\
& \text { end do }
\end{aligned}
$$

- There is an instance of S_{1} that precedes an instance of S_{2} in execution and S_{1} produces data that S_{2} consumes.
- S_{1} is the source of the dependence; S_{2} is the sink of the dependence.
- The dependence flows between instances of statements in the same iteration (loop-independent dependence).
- The number of iterations between source and sink (dependence distance) is 0 . The dependence direction is $=$.

$$
S_{1} \delta_{=}^{\dagger} S_{2} \quad \text { or } \quad S_{1} \delta_{0}^{\dagger} S_{2}
$$

Example 2

- There is an instance of S_{1} that precedes an instance of S_{2} in execution and S_{1} produces data that S_{2} consumes.
- S_{1} is the source of the dependence; S_{2} is the sink of the dependence.
- The dependence flows between instances of statements in different iterations (loop-carried dependence).
- The dependence distance is 1 . The direction is positive (<).

$$
S_{1} \delta_{<}^{\dagger} S_{2} \quad \text { or } \quad S_{1} \delta_{1}^{\dagger} S_{2}
$$

Example 3

$$
\begin{gathered}
\text { do } \quad i=2,4 \\
S_{1}: \quad a(i)=b(i)+c(i) \\
S_{2}: \quad d(i)=a(i+1) \\
\text { end do }
\end{gathered}
$$

- There is an instance of S_{2} that precedes an instance of S_{1} in execution and S_{2} consumes data that S_{1} produces.
- S_{2} is the source of the dependence; S_{1} is the sink of the dependence.
- The dependence is loop-carried.
- The dependence distance is 1 .

$$
S_{2} \delta_{<}^{a} S_{1} \quad \text { or } \quad S_{2} \delta_{1}^{a} S_{1}
$$

- Are you sure you know why it is $S_{2} \delta_{<}^{a} S_{1}$ even though S_{1} appears before S_{2} in the code?

Example 4

do $i=2,4$
do $j=2,4$
S: $\quad a(i, j)=a(i-1, j+1)$
end do
end do

- An instance of S precedes another instance of S and S produces data that S consumes.
- S is both source and sink.
- The dependence is loopcarried.
- The dependence distance is $(1,-1)$.
$S \delta_{((,>)}^{\dagger} S \quad$ or $\quad S \delta_{(1,-1)}^{\dagger} S$

Problem Formulation

- Consider the following perfect nest of depth d :

subscript subscript position

$\vec{I}=\left(l_{1}, l_{2}, \cdots, l_{d}\right)$
$\vec{L}=\left(L_{1}, L_{2}, \cdots, L_{d}\right)$
$\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \mathrm{U}_{2}, \cdots, \mathrm{U}_{\mathrm{d}}\right)$
$\vec{L} \leq \vec{U}$
linear functions

$$
b_{0}+b_{1} I_{1}+b_{2} I_{2}+\cdots+b_{d} I_{d}
$$

function
Or

Problem Formulation

- Dependence will exist if there exists two iteration vectors \vec{k} and \bar{j} such that $\overrightarrow{\mathrm{L}} \leq \overrightarrow{\mathrm{k}} \leq \overrightarrow{\mathrm{j}} \leq \overline{\mathrm{U}}$ and:

$$
\begin{array}{cc}
& \mathrm{f}_{1}(\overrightarrow{\mathrm{k}})=\mathrm{g}_{1}(\overrightarrow{\mathrm{j}}) \\
\text { and } \\
\text { and } & \mathrm{f}_{2}(\overrightarrow{\mathrm{k}})=\mathrm{g}_{2}(\overrightarrow{\mathrm{j}}) \\
& \vdots \\
\text { and } & \mathrm{f}_{\mathrm{m}}(\overrightarrow{\mathrm{k}})=\mathrm{g}_{\mathrm{m}}(\overrightarrow{\mathrm{j}})
\end{array}
$$

- That is:

$$
\begin{array}{cc}
& f_{1}(\vec{k})-g_{1}(\vec{j})=0 \\
\text { and } \\
\text { and } & f_{2}(\vec{k})-g_{2}(\vec{j})=0 \\
\text { and } \\
& \vdots \\
& f_{m}(\vec{k})-g_{m}(\vec{j})=0
\end{array}
$$

Problem Formulation - Example

$$
\begin{gathered}
\text { do } \quad i=2,4 \\
S_{1}: \quad a(i)=b(i)+c(i) \\
S_{2}: \quad d(i)=a(i-1) \\
\text { end do }
\end{gathered}
$$

- Does there exist two iteration vectors i_{1} and i_{2}, such that
$2 \leq i_{1} \leq i_{2} \leq 4$ and such that:

$$
i_{1}=i_{2}-1 ?
$$

- Answer: yes; $i_{1}=2 \& i_{2}=3$ and $i_{1}=3 \& i_{2}=4$.
- Hence, there is dependence!
- The dependence distance vector is $i_{2}-i_{1}=1$.
- The dependence direction vector is $\operatorname{sign}(1)=<$.

Problem Formulation - Example

$$
\begin{gathered}
\text { do } i=2,4 \\
S_{1}: \quad a(i)=b(i)+c(i) \\
S_{2}: \quad d(i)=a(i+1) \\
\text { end do }
\end{gathered}
$$

- Does there exist two iteration vectors i_{1} and i_{2}, such that
$2 \leq i_{1} \leq i_{2} \leq 4$ and such that:

$$
i_{1}=i_{2}+1 ?
$$

- Answer: yes; $i_{1}=3 \& i_{2}=2$ and $i_{1}=4 \& i_{2}=3$. (But, but!).
- Hence, there is dependence!
- The dependence distance vector is $i_{2}-i_{1}=-1$.
- The dependence direction vector is sign(-1) =>>.
- Is this possible?

Problem Formulation - Example

$$
\begin{aligned}
& \text { do } i=1,10 \\
& S_{1}: \quad a(2 * i)=b(i)+c(i) \\
& S_{2}: \quad d(i)=a(2 * i+1) \\
& \text { end do }
\end{aligned}
$$

- Does there exist two iteration vectors i_{1} and i_{2}, such that
$1 \leq i_{1} \leq i_{2} \leq 10$ and such that:

$$
2 * i_{1}=2 * i_{2}+1 ?
$$

- Answer: no; $2 * i_{1}$ is even $\& 2 * i_{2}+1$ is odd.
- Hence, there is no dependence!

Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of 2 d variables $\& m+d$ constraint!
- An algorithm that determines if there exits two iteration vectors \vec{k} and j that satisfies these constraints is called a dependence tester.
- The dependence distance vector is given by $\vec{j}-\vec{k}$
- The dependence direction vector is give by $\operatorname{sign}(\vec{j}-\vec{k})$.
- Dependence testing is NP-complete!
- A dependence test that reports dependence only when there is dependence is said to be exact. Otherwise it is in-exact.
- A dependence test must be conservative; if the existence of dependence cannot be ascertained, dependence must be assumed.

Dependence Testers

- Lamport's Test.
- GCD Test.
- Banerjee's Inequalities.
- Generalized GCD Test.
- Power Test.
- I-Test.
- Omega Test.
- Delta Test.
- Stanford Test.
- etc...

Lamport's Test

- Lamport's Test is used when there is a single index variable in the subscript expressions, and when the coefficients of the index variable in both expressions are the same.

$$
\begin{aligned}
A\left(\cdots, b^{*} i+c_{1}, \cdots\right) & =\cdots \\
\cdots & =A\left(\cdots, b^{\star} i+c_{2}, \cdots\right)
\end{aligned}
$$

- The dependence problem: does there exist i_{1} and i_{2}, such that L_{i} $\leq \mathrm{i}_{1} \leq \mathrm{i}_{2} \leq \mathrm{U}_{\mathrm{i}}$ and such that

$$
b * i_{1}+c_{1}=b * i_{2}+c_{2} ? \quad \text { or } \quad i_{2}-i_{1}=\frac{c_{1}-c_{2}}{b} ?
$$

- There is integer solution if and only if $\frac{c_{1}-c_{2}}{b}$ is integer.
- The dependence distance is $d=\frac{c_{1}-c_{2}}{b}$ if $L_{i} \leq|d| \leq U_{i}$.
- $d>0 \Rightarrow$ true dependence.
$d=0 \Rightarrow$ loop independent dependence. $\mathrm{d}<0 \Rightarrow$ anti dependence.

Lamport's Test - Example

$$
\begin{gathered}
\text { do } i=1, n \\
\text { do } j=1, n \\
S: \quad a(i, j)=a(i-1, j+1)
\end{gathered}
$$

$$
\mathrm{j}_{1}=\mathrm{j}_{2}+1 ?
$$

$$
b=1 ; c_{1}=0 ; c_{2}=-1
$$

$$
b=1 ; c_{1}=0 ; c_{2}=1
$$

$$
\frac{c_{1}-c_{2}}{b}=1
$$

$$
\frac{c_{1}-c_{2}}{b}=-1
$$

There is dependence.
Distance (i) is 1.
There is dependence.
Distance (j) is -1.
$S \delta_{(1,-1)}^{\dagger} S \quad$ or $S \delta_{(<,>)}^{\dagger} S$

Lamport's Test - Example

GCD Test

- Given the following equation:

$$
\sum_{i=1}^{n} a_{i} x_{i}=c \quad a_{i}^{\prime} s \text { and } c \text { are int egers }
$$

an integer solution exists if and only if:

$$
\operatorname{gcd}\left(a_{1}, a_{2}, \cdots, a_{n}\right) \text { divides } c
$$

- Problems:
- ignores loop bounds.
- gives no information on distance or direction of dependence.
- often $\operatorname{gcd}(\ldots . .$.$) is 1$ which always divides c , resulting in false dependences.

GCD Test - Example

$$
\begin{gathered}
\text { do } i=1,10 \\
S_{1}: \quad a\left(2^{*} i\right)=b(i)+c(i) \\
S_{2}: \quad d(i)=a\left(2^{*} i-1\right) \\
\text { end do }
\end{gathered}
$$

- Does there exist two iteration vectors i_{1} and i_{2}, such that $1 \leq i_{1} \leq i_{2} \leq 10$ and such that:

$$
2 * i_{1}=2 * i_{2}-1 ?
$$

or

$$
2 * i_{2}-2 * i_{1}=1 ?
$$

- There will be an integer solution if and only if $\operatorname{gcd}(2,-2)$ divides 1.
- This is not the case, and hence, there is no dependence!

GCD Test Example

$$
\begin{aligned}
& \text { do } i=1,10 \\
& S_{1}: \quad a(i)=b(i)+c(i) \\
& S_{2}: \quad d(i)=a(i-100) \\
& \text { end do }
\end{aligned}
$$

- Does there exist two iteration vectors i_{1} and i_{2}, such that $1 \leq i_{1} \leq i_{2} \leq 10$ and such that:

```
i
```

or

$$
i_{2}-i_{1}=100 ?
$$

- There will be an integer solution if and only if $\operatorname{gcd}(1,-1)$ divides 100.
- This is the case, and hence, there is dependence! Or is there?

Dependence Testing Complications

- Unknown loop bounds.

$$
\begin{gathered}
\text { do } \mathrm{i}=1, \mathrm{~N} \\
\mathrm{~S}_{1}: \quad \mathrm{a}(\mathrm{i})=\mathrm{a}(\mathrm{i}+10) \\
\text { end do }
\end{gathered}
$$

What is the relationship between N and 10?

- Triangular loops.

$$
\begin{gathered}
\text { do } \mathrm{i}=1, \mathrm{~N} \\
\mathrm{do} \mathrm{j}=1, \mathrm{i}-1 \\
\mathrm{~S}: \quad \begin{array}{l}
\mathrm{i}, \mathrm{j})=\mathrm{a}(\mathrm{j}, \mathrm{i})
\end{array} \\
\text { end do } \\
\text { end do }
\end{gathered}
$$

Must impose j < i as an additional constraint.

More Complications

- User variables

$$
\begin{gathered}
\text { do } i=1,10 \\
S_{1}: \quad a(i)=a(i+k) \\
\text { end do }
\end{gathered}
$$

$$
\begin{gathered}
\text { do } i=L, H \\
S_{1}: \quad a(i)=a(i-1) \\
\text { end do }
\end{gathered}
$$

Same problem as unknown loop bounds, but occur due to some loop transformations (e.g., normalization).

$$
\begin{gathered}
\text { do } \mathrm{i}=1, \mathrm{H}-\mathrm{L} \\
\mathrm{~S}_{1}: \quad a(\mathrm{i}+\mathrm{L})=\mathrm{a}(\mathrm{i}+\mathrm{L}-1) \\
\text { end do }
\end{gathered}
$$

More Complications: Scalars

do $i=1, N$
$S_{1}: \quad x=a(i)$
$S_{2}: \quad b(i)=x$
end do

$\Longrightarrow \quad$| do $i=1, N$ |
| :---: |
| $S_{1}: \quad x(i)=a(i)$ |
| $S_{2}:$$b(i)=x(i)$
 end do |

$j=N-1$
do $\mathrm{i}=1, \mathrm{~N}$
$S_{1}: \quad a(i)=a(j)$
$S_{2}: \quad j=j-1$
end do
sum $=0$
do $i=1, N$
$S_{1}: \quad$ sum $=$ sum $+a(i)$
end do

$$
\begin{gathered}
\text { do } i=1, N \\
\mathrm{~S}_{1}: \quad \operatorname{sum}(i)=a(i) \\
\text { end do } \\
\operatorname{sum}+=\operatorname{sum}(i) \quad i=1, N
\end{gathered}
$$

Serious Complications

- Aliases.
- Equivalence Statements in Fortran:
real $a(10,10), b(10)$
makes b the same as the first column of a.
- Common blocks: Fortran's way of having shared/global variables.
common/shared/a,b,c
subroutine foo (...) common /shared/a,b,c
common /shared/x,y,z

Loop Parallelization

- A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

$$
\begin{aligned}
& \text { do } i=2, n-1 \\
& \text { do } \mathrm{j}=2, \mathrm{~m}-1 \\
& a(\mathrm{i}, \mathrm{j}) \quad=\ldots \\
& \text {... }=a(i, j) \\
& b(i, j) \quad=\ldots \\
& \ldots \quad=b(i, j-1) \\
& c(i, j) \quad=\ldots \\
& \ldots \quad=c(i-1, j) \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

Loop Parallelization

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

$$
\begin{aligned}
& \text { do } i=2, n-1 \\
& \text { do } \mathrm{j}=2, \mathrm{~m}-1 \\
& \delta_{=,=}^{\dagger} \\
& \begin{array}{ll}
a(i, j) & =\ldots \\
\ldots & =a(i, j)
\end{array} \\
& b(i, j) \quad=\ldots \\
& =b(i, j-1) \\
& c(i, j) \quad=\ldots \\
& \text {... } \quad=c(i-1, j) \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

Loop Parallelization

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

$$
\begin{aligned}
& \text { do } \mathrm{i}=2, \mathrm{n}-1 \\
& \text { do } \mathrm{j}=2, \mathrm{~m}-1 \\
& a(\mathrm{i}, \mathrm{j}) \quad=\ldots \\
& \text {... }=a(i, j) \\
& \begin{array}{lll}
\delta_{=,<}^{\dagger} & b(i, j) & =\ldots \\
& \ldots & =b(i, j-1)
\end{array} \\
& c(\mathrm{i}, \mathrm{j}) \quad=\ldots \\
& \text {... } \quad=c(i-1, j) \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

Loop Parallelization

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

$$
\begin{aligned}
& \text { do } \mathrm{i}=2, \mathrm{n}-1 \\
& \text { do } \mathrm{j}=2, \mathrm{~m}-1 \\
& a(i, j) \quad=\ldots \\
& \text {... }=a(\mathrm{i}, \mathrm{j}) \\
& b(i, j) \quad=\ldots \\
& =b(i, j-1) \\
& \begin{array}{lll}
\delta_{<,=}^{\dagger} & c(i, j) & =\ldots \\
& \ldots & =c(i-1, j)
\end{array} \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

Loop Parallelization

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

$$
\begin{aligned}
& \text { do } i=2, n-1 \\
& \text { do } \mathrm{j}=2, \mathrm{~m}-1 \\
& \begin{array}{lll}
\delta_{=,=}^{\dagger} & a(\mathrm{i}, \mathrm{j}) & =\ldots \\
& \ldots & =a(\mathrm{i}, \mathrm{j})
\end{array} \\
& \delta_{=,<}^{\dagger} \quad b(i, j) \quad=\ldots \\
& \ldots \quad=b(i, j-1) \\
& \delta_{<,=}^{\dagger} \quad c(i, j) \quad=\ldots \\
& \text {... } \quad=c(i-1, j) \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

- Outermost loop with a non "=" direction carries dependence!

Loop Parallelization

The iterations of a loop may be executed in parallel with one another if and only if no dependences are carried by the loop!

Loop Parallelization - Example

- Iterations of loop j must be executed sequentially, but the iterations of loop i may be executed in parallel.
- Outer loop parallelism.

Loop Parallelization - Example

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel.
- Inner loop parallelism.

Loop Parallelization - Example

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel. Why?
- Inner loop parallelism.

Loop Interchange

Loop interchange changes the order of the loops to improve the spatial locality of a program.

$$
\text { do } \mathrm{j}=1, \mathrm{n}
$$
$$
\text { do } \mathrm{i}=1, \mathrm{n}
$$
$$
\ldots a(i, j) \ldots
$$
end do
end do

\longrightarrow j

Loop Interchange

Loop interchange changes the order of the loops to improve the spatial locality of a program.

do $\mathrm{j}=1, \mathrm{n}$
do $i=1, n$
... $a(i, j) . .$.
end do
end do

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \text { do } \mathrm{j}=1, \mathrm{n} \\
& \ldots \mathrm{a}(\mathrm{i}, \mathrm{j}) \ldots \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

Loop Interchange

- Loop interchange can improve the granularity of parallelism!

```
do \(\mathrm{i}=1, \mathrm{n}\)
    do \(\mathrm{j}=1, \mathrm{n}\)
        \(a(i, j)=b(i, j)\)
        \(c(i, j)=a(i-1, j)\)
    end do
end do
```

$$
\begin{aligned}
& \begin{array}{l}
\text { do } \mathrm{j}=1, \mathrm{n} \\
\text { do } \mathrm{i}=1, \mathrm{n} \\
\mathrm{a}(\mathrm{i}, \mathrm{j})=\mathrm{b}(\mathrm{i}, \mathrm{j}) \\
\mathrm{c}(\mathrm{i}, \mathrm{j})
\end{array} \mathrm{=a(i-1,j)} \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

$$
\delta_{c_{,}=}^{\dagger=}
$$

Loop Interchange

$$
\begin{aligned}
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \text { do } \mathrm{j}=1, \mathrm{n} \\
& \ldots \mathrm{a}(\mathrm{i}, \mathrm{j}) \ldots \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

- When is loop interchange legal?

Loop Interchange

do $i=1, n$ do $\mathrm{j}=1, \mathrm{n}$
... $a(i, j)$...
end do
end do

- When is loop interchange legal?

Loop Interchange

```
do i=1,n
    do j=1,n
        ... a(i,j) ...
    end do
end do
```


$$
\begin{aligned}
& \text { do } \mathrm{j}=1, \mathrm{n} \\
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \ldots \mathrm{a}(\mathrm{i}, \mathrm{j}) \ldots \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

- When is loop interchange legal?

Loop Interchange

```
do i=1,n
    do j=1,n
        ... a(i,j) ...
    end do
end do
```


$$
\begin{aligned}
& \text { do } \mathrm{j}=1, \mathrm{n} \\
& \text { do } \mathrm{i}=1, \mathrm{n} \\
& \ldots \mathrm{a}(\mathrm{i}, \mathrm{j}) \ldots \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

- When is loop interchange legal? when the "interchanged" dependences remain lexiographically positive!

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

$$
\begin{aligned}
& \text { do } t=1, T \\
& \text { do } i=1, n \\
& \text { do } \mathrm{j}=1, \mathrm{n} \\
& \ldots \text { a(i,j) ... } \\
& \text { end do } \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

do ic $=1, n, B$ do $\mathrm{jc}=1, \mathrm{n}, \mathrm{B}$ dot $=1, T$
end do
end do
end do

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

do ic $=1, n, B$ do $\mathrm{jc}=1, \mathrm{n}, \mathrm{B}$

control loops

dot $=1, T$

B: Block size

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.
do ic $=1, n, B$ do $\mathrm{jc}=1, \mathrm{n}, \mathrm{B}$ do $t=1, T$
end do end do end do

$$
\text { ic }=2
$$

control loops

B: Block size

jc =1

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

jc $=2$

Loop Blocking (Tiling)

	dot $=1, \mathrm{~T}$	do jc = 1, n, B
do $t=1, \mathrm{~T}$	do ic $=1, n, B$	do $t=1, T$
do $i=1, n$	do $\mathrm{i}=1, \mathrm{~B}$	do $\mathrm{i}=1, \mathrm{~B}$
do $\mathrm{j}=1, \mathrm{n}$	do jc = 1, n, B	do $\mathrm{j}=1, \mathrm{~B}$
... $a(i, j) . .$.	do $\mathrm{j}=1, \mathrm{~B}$... $\mathrm{a}(\mathrm{ic}+\mathrm{i}-1, \mathrm{j}+\mathrm{j}-1) . .$.
end do	... $a(i c+i-1, j c+j-1) . .$.	end do
end do	end do	end do
end do	end do	end do
	end do	end do
		end do

- When is loop blocking legal?

CSC D70: Compiler Optimization Parallelization

Prof. Gennady Pekhimenko
 University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of Todd Mowry and Tarek Abdelrahman

